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In daily life humans integrate force and position feedback from mechanoreceptors, proprioception, and vision. With handling relatively
soft, elastic objects, force and position are related and can be integrated to improve the accuracy of an estimate of either one. Sensory
weighting between different sensory systems (e.g., vision and proprioception) has been extensively studied. This study investigated
whether similar weighting can be found within the proprioceptive sensory system, more specifically between the modalities force and
position. We hypothesized that sensory weighting is governed by object stiffness: position feedback is weighted heavier on soft objects
(large deflections), while force feedback is weighted heavier on stiff objects (small deflections). Subjects were instructed to blindly
reproduce either position or force while holding a one degree of freedom haptic manipulator that simulated a linear spring with one of
four predetermined stiffnesses. In catch trials the spring was covertly replaced by a nonlinear spring. The difference in force (�F) and
position (�X) between the regular and the catch trials revealed the sensory weighting between force and position feedback. A maximum
likelihood estimation model predicted that: (1) task instruction did not affect the outcome measures, and (2) force feedback is weighted
heavier with increasing object stiffness as was hypothesized. Both effects were found experimentally, and the subjects’ sensory weighting
closely resembled the optimal model predictions. To conclude, this study successfully demonstrated sensory weighting within the
proprioceptive system.

Introduction
Humans are able to effectively handle a wide range of objects with
different mechanical properties, using feedback from mechano-
receptors, proprioception, and vision. The mechanical properties
of an object largely determine what sensory modalities are effec-
tive. When handling stiff objects like a cup, deflections are negli-
gible so position holds no information on the applied force.
However, when handling soft objects like a sponge, deflections
are large and allow position feedback to contribute to the esti-
mated force and vice versa. Object stiffness, the physical relation-
ship between position and force, allows translation from one
modality into the other. Both force feedback (from tactile sensors
in the skin and Golgi tendon organs) and position feedback (from
muscle spindles and vision) are noisy and have limited accuracy
(Körding and Wolpert, 2004, 2006; Körding et al., 2004). When
stiffness is known, combining the sensory feedback of these two
modalities (sensory integration) provides increased accuracy of
the estimate of either force or position.

Many studies have shown sensory integration and weighting
in the CNS (Yuille and Bülthoff, 1996; Ernst and Bülthoff, 2004).
The ventriloquist effect, which is the sensation of hearing the

puppet speak while it is the puppeteer who makes the sound,
originates from sensory integration of vision and auditory cues.
Seeing the lips of the puppet move instead of the ventriloquist’s
biases the sound localization toward the puppet (Alais and Burr,
2004). Other examples of sensory weighting are the sense of lo-
cation of body parts in the peripersonal space (Bremner et al.,
2008) and integration of visual and haptic feedback during grasp-
ing tasks (Säfström and Edin, 2004). During balance control hu-
mans weight sensory input from the vestibular system, mechano-
receptors, and vision (van der Kooij et al., 2001; Zupan et al.,
2002; Mahboobin et al., 2005). Changes in environmental prop-
erties bring about changes in the relative weights between infor-
mation channels: sensory reweighting (Peterka, 2002; Peterka
and Loughlin, 2004). Also new information channels can be in-
tegrated in an existing control strategy: during stance even tactile
feedback on the tongue could be used to replace force feedback
from the soles of the feet (Vuillerme et al., 2008).

Sensory weighting between different modalities requires
knowledge of the relationship between them, as described by an
internal model of the physics of the world around us. The internal
model enables us to make estimates of the required motor com-
mands based on previous experiences (Shadmehr and Mussa-
Ivaldi, 1994; Wolpert and Miall, 1996; Wolpert and Kawato,
1998; Ostry and Feldman, 2003; Shadmehr and Krakauer, 2008).
To effectively weight sensory feedback channels, an estimate of
their accuracy is required. Bayesian inference (Körding and Wol-
pert, 2006) has been suggested to underlie sensory weighting. A
well established example of Bayesian inference from control en-
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gineering is Kalman filtering (Kalman and Bucy, 1961; Wolpert et
al., 1995).

Generally, previous research focused on sensory weighting
between different sensory systems. Especially sensory weighting
between vision and proprioception has been extensively studied.
Sensory weighting of depth cues within the vision system has
been demonstrated (Knill, 2007). Here, we wonder whether sim-
ilar sensory weighting occurs between force and position within
the proprioceptive system. The goal of this study was to deter-
mine how humans weight force and position feedback in an en-
vironment with known stiffness. We hypothesize that the weight-
ing of these modalities depends largely on object stiffness. It is
expected that position feedback is weighted heavier on soft ob-
jects (large deflections), while force feedback is weighted heavier
on stiff objects (small deflections).

Materials and Methods
Approach. To assess weighting between force and position feedback, an
experimental approach is needed that differentiates between the two.
Imagine a subject repeatedly interacting with an environment with cer-
tain stiffness (a spring), trying to either achieve a desired force (force task
FT) (Fig. 1 A) or position (position task PT) (Fig. 1 B). To improve accu-
racy, the subject might use the acquired internal model to integrate force
and position feedback. One might reason that weighting also depends on
the type of task, weighting force feedback heavier during a FT and posi-
tion feedback during a PT. Since sensory weighting is done within the
CNS, it is impossible to discriminate between the use of force and posi-
tion feedback by just measuring the exerted forces and positions. How-
ever, if the stiffness characteristic of the spring is covertly altered, the
newly acquired forces and positions can be used to reveal the subject’s
weighting strategy. This disparity in the spring environment allows the

separate weights of force and position feedback
to be determined, like Ernst and Banks (2002)
introduced disparities in a haptic environment
to determine the weights of visual and haptic
feedback. In one extreme, the subject could
have used only force feedback during a FT. He
would deliver the same force against the altered
spring, but would end up at a slightly different
position (Fig. 1C). In the other extreme, he
could have performed the FT by reproducing
the same position; the newly obtained force
would then be different. If the subject would
have weighted force and position feedback, the
newly obtained force would be in between these
two extremes. The degree in which the resulting
force is shifted toward either extreme corre-
sponds to the relative weighting between force
and position feedback. The same argument
holds for a PT (Fig. 1 D). The dependency of
weighting sensory feedback to task and stiffness
is determined experimentally and with the use
of a model.

Experimental setup. Ten healthy volunteers
age 18 –22 years, all right-handed men, partici-
pated in the study. A subject held the handle of
a one degree of freedom hydraulic haptic ma-
nipulator with his right hand (Fig. 2) (Schouten
et al., 2006). During the experiment the manip-
ulator simulated a spring and could switch be-
tween two spring models: (1) a linear spring
with stiffness ki (i � 1. . . 4): exerting a force Flin,
at position X, according to Equation 1:

F lin � ki � X; (1)

(2) a nonlinear spring that was designed to exert
a force, which was a constant force difference �f

higher at the position where the linear spring
would have exerted the target force Ftarget:

Fnon-lin � �ki � �f � ki
2/Ftarget � X� � X. (2)

A force sensor on the handle measured the force exerted by the subject.
The spring model was simulated on a real-time processing board
(dSPACE DS1005). The output of the spring model was the set point of
the hydraulic controller which controlled the position of the manipula-
tor. To exclude undesired visual feedback, the arm and manipulator
handle were blocked from view.

The experimental protocol consisted of eight blocks of trials: two
tasks (FT and PT) times four spring stiffnesses (50, 100, 230, 500
N/m). The protocol was fully automated with randomized trials and
on-screen instructions to the subject. The target force Ftarget during
FT was 10 N, and the target position during PT was such that the
target position coincided with a spring force of 10 N (see Table 1). The
order of the blocks was randomized, but all PT and FT remained
grouped together to attain best task perception. With every new block
the subject performed 15 training trials with onscreen visual feedback
which enabled him to learn the task and familiarize himself with the
spring stiffness. The subject was instructed to operate the foot switch
when an indicator bar, representing force/position (depending on
task), was aligned with the target indicators. The foot switch triggered
a measurement of position and force (0.3 s at a sample rate of 500 Hz).
After each measurement, the subject was instructed on-screen to re-
turn to the starting position i.e., the zero length of the spring. The
next trial was automatically initiated when the subject had crossed the
starting position which was indicated by the appearance of the in-
struction of the next trial. After training, the subject performed a
series of trials composed of three different types:

(1) A reference trial was a trial where the subject was instructed to
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Figure 1. Subjects were trained to blindly reproduce either a target force (A) or a target position (B) against a linear spring.
During catch trials the characteristic of the spring is covertly altered to determine how the subject weights force and position
feedback during task execution (C, D).
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deliver the force/position that was indicated onscreen by a moving indi-
cator bar and target indicators, exactly alike the training trials.

(2) A blind trial was similar to a reference trial, with the exception that
the onscreen force/position feedback was switched off. The subject was
instructed to reproduce the trained force/position blindly and to operate
the foot switch when he thought he attained the trained force/position
(depending on task instruction).

(3) A catch trial was a blind trial where the spring was covertly substi-
tuted with the nonlinear spring (Fig. 1C,D). The spring model was always
substituted at the zero-length position, to prevent the subject from no-
ticing any change in force.

Blind trials were alternated with reference trials to prevent drift from
the trained force/position. On average one in three blind trials was ran-
domly substituted with a catch trial, effectively providing one catch trial
every six trials. A total of 12 catch trials were recorded per block.

Data analysis. The force and position during blind trials and catch
trials were averaged over the 0.3 s measurement and the repetitions. Two
repeated-measures ANOVA tests (RM-ANOVA) were performed. The
first tested for effects of task, stiffness, and trial type on the measured
force levels in the three trial types. The second tested for effects of task
and stiffness within the difference in the force (�F ) between the blind
trials and the catch trials. A significance level of 0.05 was maintained for
all statistical tests.

Maximum likelihood estimation model. We derived a maximum likeli-
hood estimation (MLE) model to determine the optimal weights of force
and position feedback during FT and PT, given the uncertainties of the
force and position estimates of the subjects. The model was used to
predict the differences between blind trials and catch trials.

Assuming the subject familiarizes himself with spring stiffness ki dur-
ing training, he can estimate force F (Eq. 3) or position X (Eq. 4) from a
weighted combination of a force estimate f̂ and position estimate x̂.

F � wf � f̂ � wx � �ki � x̂� (3)

X � wf � � f̂/ki� � wx � x̂ (4)

MLE theory states that the optimal weight factors for force (wf) and
position (wx) are inversely proportional to the variance in their respective
measurements (�f

2 and �x
2). Scaling the weights such that wf � wx � 1

results in the optimal unbiased weights, as displayed in Equations 5 and 6
for FT and Equations 7 and 8 for PT.

wf
FT�ki� �

1/�f
2

1/�f
2 � 1/�k�x

2 �
1/�f

2

1/�f
2 � 1/�ki

2 � �x
2�

(5)

wx
FT�ki� �

1/�k�x
2

1/�f
2 � 1/�k�x

2 �
1/�ki

2 � �x
2�

1/�f
2 � 1/�ki

2 � �x
2�
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wf
PT�ki� �

1/�f/k
2

1/�f/k
2 � 1/�x

2 �
ki

2/�f
2

ki
2/�f

2 � 1/�x
2 (7)

wx
PT�ki� �

1/�x
2

1/�f/k
2 � 1/�x

2 �
1/�x

2

ki
2/�f

2 � 1/�x
2 (8)

It is easily shown that multiplication of the numerator and denominator
of Equations 5 and 6 by ki

2 yields Equations 7 and 8. This implicates that
theoretically in this experiment task instruction does not affect the
weighting factors. In addition to the direct weighting of sensory informa-
tion, humans are also known to weight prior information in their final
estimates of sensory information (Körding and Wolpert, 2004). In the
current setup that would mean that prior knowledge obtained during the
training phase (i.e., the variance and mean of applied forces and posi-
tions) would be weighted during both blind trials and catch trials. In
Appendix A priors are added to Equations 5– 8 to implement the effect of
prior knowledge. We demonstrate that with sufficient training the effects
of priors cancel out in the current experimental setup.

It was assumed that subjects obtained an internal model of the spring
and adjusted their weights accordingly during the training sessions. The
force and position during catch trials was predicted with the model by
assuming that the weight factors remained the same as in the blind trials
and were not influenced by the nonlinear spring of the catch trials. The
exerted force in a catch trial of a FT could thus be determined by solving
the set of equations in Equation 9 for F. The first equation of the set
expresses the force estimated by the subject from weighted force and
position feedback. The second equation is the spring characteristic of the
nonlinear spring (each solution must per definition lie on the spring
characteristic). The position in a catch trial of a PT could be determined
likewise by solving the set of equations in Equation 10 for X.

� F � wf
FT � f̂ � wx

FT � ki � x̂
f̂ � �ki � �f � ki

2/ftarget � x̂� � x̂ (9)

� X � wf
PT � f̂/ki � wx

PT � x̂
f̂ � �ki � �f � ki

2/ftarget � x̂� � x̂ (10)

The model has only two parameters: �f
2 and �x

2, which express the accu-
racy of a force measurement and position measurement of the subject.
These parameters were estimated in two additional experiments with
reference trials and blind trials, but without catch trials. The subjects
performed the FT protocol on an infinitely stiff spring to determine �f

2

and the PT protocol in zero stiffness to determine �x
2. These conditions

ensured that only a single channel of information (force or position)
could be used. The variance in the blind repetitions of the instructed
force and position were used as an estimator for �f

2 and �x
2.

Virtual spring

Force sensor Haptic
manipulator

Force or 
position

Blocking
screen

Foot switch

Figure 2. Experimental setup. The subject controlled a haptic manipulator that simulated a
spring. Depending on task, either force or position was displayed together with the target.
During blind trials and catch trials the visual feedback on force or position was disabled. The
subject operated a foot switch to indicate he believed to have acquired the target force or
position.

Table 1. Target force and position for the four stiffness conditions

Spring stiffness (N/m) Force task (N) Position task (mm)

50 10 200
100 10 100
230 10 43.5
500 10 20.0
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Results
Experiments
Figure 3 shows the exerted forces and corresponding positions
for the three trial types in one of the four stiffness conditions (50
N/m) for FT and PT. Reference trials are characterized by high
accuracy and small SDs. During blind trials the subjects exerted a
higher force than the target force, indicating the subjects under-
estimated the exerted force. During catch trials the force was
slightly higher than during the blind trials; however this corre-
sponded to a smaller position deviation due to the nonlinearity of
the spring (Fig. 3, bottom panels). The results for PT show similar
effects as for FT. Subjects underestimated the position, effectively
moving the handle beyond its target during blind trials.

Figure 4 shows that during reference trials the subjects closely
approximated the target force of 10 N in all stiffness conditions. A
slightly higher force is found during blind and catch trials ( p �
0.001). In addition to trial type, stiffness had a significant effect
on exerted force ( p � 0.01). In agreement with the model pre-
diction no significant effect of task instruction was found ( p �
0.108). Of the interaction effects only the stiffness � trial type was
significant ( p � 0.001).

Post hoc tests revealed significant differences between stiffness
50 N/m and all other stiffness conditions ( p � 0.05 with stiffness
100 N/m, p � 0.01 with stiffness 230 N/m, and p � 0.001 with
stiffness 500 N/m) and between stiffness 100 N/m and stiffness
500 N/m ( p � 0.05), and between the three trial types (all p �
0.001).

The graphs of the measured positions show a monotonously
decreasing relation due to the linear spring relating force and
position.

Model comparison
Figure 5 illustrates the predictions of the maximum likelihood
model. From top to bottom it shows the force difference �F and
position difference �X between blind trials and catch trials, and
the optimal weights wf and wx as a function of spring stiffness k.
Figure 5C shows that force is weighted heavier on stiff objects and
position is weighted heavier on soft objects. In the case that the
difference in force between the linear spring (blind trials) and
nonlinear spring (catch trials) is sufficiently small (�f �� ftarget),
the stiffness where force and position feedback are equally
weighted approaches k � �f/�x.

�F (Fig. 5A) decreases monotonously with stiffness. For zero
stiffness, only position feedback is used. As a result the position in
a catch trial is the same as in a blind trial and �F � �f. For infinite
stiffness only force feedback is used and the force on the nonlin-
ear spring will match the force on the linear spring (�F � 0).

In the experimental setup, target force ftarget is constant, so the
corresponding position xtarget equals ftarget/k. Because of this fac-
tor 1/k, the graph of �X (Fig. 5B) has its distinct trough. In the
two extremes �X is zero. For zero stiffness only position is
weighted and thus the position in catch trials equals the position
in blind trials. For infinite stiffness the displacement of the spring
is zero regardless of force. �X has its minimum at the intersection
of the two weight curves (k � �f/�x) and its value depends only on
the ratio �f/�x and on ftarget and �f used in the experiment.

To compare the results to the model predictions, the differ-
ence between the mean force and position during catch trials and
blind trials was determined. Figure 6 shows the measured differ-
ence in force during FT (left) and the difference in position dur-
ing PT (right) between the blind and the catch trials together with
the model predictions. The force error during FT decreases with
stiffness, while the position error shows a distinct trough at a
stiffness of �100 N/m during PT. Also the repeated measures
ANOVA on the force difference between the blind and the catch
trials revealed a significant effect of stiffness ( p � 0.01). Again the
effect of task did not reach significance ( p � 0.066).

Post hoc tests revealed significant differences between stiffness
50 N/m and all other stiffness conditions ( p � 0.05 with stiffness
100 N/m, p � 0.05 with stiffness 230 N/m, and p � 0.01 with
stiffness 500 N/m).

The dashed lines in Figure 6 indicate the difference between
catch and blind trials as predicted by the maximum likelihood
model. The predictions were based on the variances determined
in the experiment with an infinitely stiff spring (only force feed-
back available) and a spring with zero stiffness (only position
feedback available). SD for pure force replication (�f) was 0.92 N,
SD for position (�x) was 8.5 mm (so �f/�x � 108 N/m).

The model predicted a monotonously decreasing �F for the
FT. The experiment data show the same trend, although the sub-
jects showed a stronger underestimation of force in catch trials
than predicted by the model. The model predicted a distinct
minimum in �X for the PT, which was also found experimen-
tally. The model results for the PT generally fitted the experi-
mental data more accurately than the results for the FT.

Discussion
Experiment data
In agreement with the hypothesis a significant effect of stiffness
on the force and position difference between the catch and the
blind trials was found. Apparently, the weighting of sensory input
from mechanoreceptors is variable and depends on the stiffness
of the object humans are interacting with. The experiment de-
pends on the assumption that humans do not adapt their sensory
weighting in the catch trials. Care was taken to design a nonlinear
spring with characteristics much alike the linear spring but which
did result in sufficient force difference at the target position to
overcome the variance in the blind trials. Subjects could not dis-
tinguish catch trials from regular blind trials. In fact, when asked
afterward only one of the subjects reported he suspected a change
in the behavior of the manipulator, but could not indicate what it
was.

Subjects consistently underestimated the force and position
during the blind trials, effectively exerting too high forces with
respect to the reference trials (Figs. 3, 4). This did not affect our

Figure 3. Bar diagrams of the results for the three trial types for FT and PT in a single stiffness
condition (ki � 50 N/m). Error bars indicate one SD over the subjects.
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results concerning the weighting because
of the comparison between blind trials and
catch trials, since both are performed
blindly. A possible explanation may be
that overestimation is a natural byproduct
of neural processing as was suggested in
force replication tasks before by Shergill et
al. (2003).

Maximum likelihood model
Derivation of the maximum likelihood
model revealed that task instruction has
no effect on the optimal weighting of force
and position. This means that interpreting
either task instruction as “just do the same
as during training” would result in equal
task performance. Indeed no significant
difference was found between PT and FT,
indicating that although subjects were try-
ing to perform either a FT or PT, the out-
come was similar. Instructing a subject to
reproduce either force or position can be
interpreted as focusing the subject’s atten-
tion to one of the two modalities. Recent
literature has shown that attentional ma-
nipulation of a specific sensory modality
does not influence the relative weighting of
that modality (Helbig and Ernst, 2008).
Note that the lack of task effect only holds
for this particular setup: the linear spring
in a quasistatic experiment yields redun-
dancy between force and position. In dy-
namic experiments (like perturbed pos-
ture) force and position feedback describe
different dynamics, resulting in a substan-
tial effect of task instruction (Doemges
and Rack, 1992a,b; Abbink et al., 2004).

The model explained the course of the
data rather well, although there was a re-
markable difference with the subjects’
overestimation of force during a FT (Fig.
6). In terms of sensory weighting, this in-
dicates that subjects are either biased to-
ward using position feedback at the ex-
pense of force feedback, or that the weights
are nonideal and sum up to a value other
than one. Nevertheless, both model and
data showed that increasing spring stiff-
ness leads to a weight shift toward force
feedback, as was hypothesized.

Conclusion
This study has shown stiffness-dependent weighting of sensory
input from mechanoreceptors for force and position. The maxi-
mum likelihood model predicted a monotonously decreasing
force difference between the catch and the blind trials with in-
creasing stiffness and a distinct trough in the position difference.
Both were experimentally found indicating that a maximum like-
lihood model not only describes sensory weighting between sen-
sory systems as was found in previous literature, but also within
one sensory system, in this case proprioception.

Additionally, in reproduction tasks, subjects consistently un-
derestimated the force/position. In the blind trials, the subjects

exerted a force greater than the target force in all stiffness
conditions.

Finally, it was shown that in replication tasks with known
stiffness conditions, there is no difference between position and
force tasks with respect to sensory weighting. The model pre-
dicted the exact same weighting factors and in accordance no
significant task effect was found in the experiment.

This study successfully demonstrates sensory weighting inside
the proprioceptive sensory system, i.e., between force and posi-
tion feedback. The experiment shows sensory weighting that is
close to optimal according to the MLE model.
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Appendix A—Application of Priors in the MLE
Model
In the main text force F and position X are estimated from a
weighted combination of a force estimate f̂ and position estimate
x̂. In previous research it has been shown that prior experiences
can bias estimation (Körding et al., 2004). This can be modeled by
adding priors: a distribution of likely forces and positions. With
the application of priors for force and position, Equations 3 and 4
become the following:

F � wf � f̂ � wx � �ki � x̂� � wfp � �fp � wxp � �ki � �xp�

(11)

X � wf � � f̂/ki� � wx � x̂ � wfp � ��fp/ki� � wxp � �xp,

(12)

with weights for force (wf), position (wx), force prior (wfp
), and

position prior (wxp
), and the expected values for force (�fp

) and
position (�xp

). Scaling the weights such that wf � wx � wfp
�

wxp
� 1 results in the optimal weights, as displayed in Equations

13–16 for FT and Equations 17–20 for PT.
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2 � 1/�k�xp

2

�
1/�ki

2 � �xp

2 �

1/�f
2 � 1/�ki

2 � �x
2� � 1/�fp

2 � 1/�ki
2 � �xp

2 �

(16)

wf
PT�ki� �

1/�f/k
2

1/�f/k
2 � 1/�x

2 � 1/�fp/k
2 � 1/�xp

2

�
ki

2/�f
2

ki
2/�f

2 � 1/�x
2 � ki

2/�fp

2 � 1/�xp

2 (17)

wx
PT�ki� �

1/�x
2

1/�f/k
2 � 1/�x

2 � 1/�fp/k
2 � 1/�xp

2

�
1/�x

2

ki
2/�f

2 � 1/�x
2 � ki

2/�fp

2 � 1/�xp

2 (18)

wfp

PT�ki� �
1/�fp/k

2

1/�f/k
2 � 1/�x

2 � 1/�fp/k
2 � 1/�xp

2

�
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2/�fp

2
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2/�f
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2 � ki

2/�fp

2 � 1/�xp

2 (19)

wxp

PT�ki� �
1/�xp

2

1/�f/k
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2 � 1/�fp/k
2 � 1/�xp

2

�
1/�xp

2
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2/�f

2 � 1/�x
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2/�fp

2 � 1/�xp

2 , (20)

with �f
2, �x

2, �f
2

p
, and �x

2
p

the variances of respectively force, posi-
tion, force prior, and position prior. Note that application of
priors does not introduce an effect of task instruction since in
accordance to the main text multiplication of the numerator and
denominator of Equations 13–16 by ki

2 yields Equations 17–20.
With the addition of priors, Equations 9 and 10 in the main

text become:

�F � w f
FT � f̂ � w x

FT � �ki � x̂� � w fp

FT � fp � w xp

FT � �ki � xp�

f̂ � �ki � �f � ki
2/ftarget � x̂� � x̂

(21)

�X � w f
PT � �f̂/ki� � w x

PT � x̂ � w fp

PT � � fp/ki� � w xp

PT � x̂

f̂ � �ki � �f � ki
2/ftarget � x̂� � x̂

. (22)

When Equations 21 and 22 are solved with substitution of Equa-
tions 13–20, the resulting force F and position X are both func-
tions of ki, ftarget, �f, �f, �x, �fp

, and �xp
:

F � g�ki,ftarget,�f,�f,�x,�fp,�xp� (23)

X � h�ki,ftarget,�f,�f,�x,�fp,�xp�.

However, when the priors are assumed to be ideal, the limit case after
sufficient training (�fp

3ftarget and �xp
3xtarget) loses its dependency

on variance of the priors �fp
and �xp

, yielding the following:

lim
��fp,�xp�3� ftarget, xtarget�

F � g�ki,ftarget,�f,�f,�x� (24)

lim
��fp,�xp�3� ftarget, xtarget�

X � h�ki,ftarget,�f,�f,�x�.
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Figure 6. Force and position difference between the catch and the blind trials for FT and PT. Left, Force difference in FT. Right,
Position difference in PT. Experimental data in solid lines and model predictions in dashed lines. Error bars indicate one SD over the
subjects.
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This means that the formulae in the main text apply even for the
addition of priors, under the assumption that the priors are un-
biased, i.e., the means of the prior distributions coincide with the
target force and position during training trials.
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